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ABSTRACT

Rigorous expressions for diffusion-controlled currents at a sta-

tionary finite disk electrode are derived through use of the Winer-Hofp

technique. The chronoamperometric curve obtained varies smoothly from a i
curve represented by the Cottrell equation to a steady state value
similar to that obtained for a spherical electrode as time elapses. The ;
solution can be expressed also as the Cottrell term multiplied by a

power series in the parameter /Dt/a, where a is the electrode radius.

The present work is discussed in terms of the coefficient of the first j

term in this formulation.
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| INTRODUCTION

\ Most studies of mass transfer in electrochemical problems have

| focused on linear diffusion to and from a planar electrode or on diffusion
in the radial direction at a spherical or a cylindrical electrode. In

. other words, diffusion is considered only in the direction perpendicular

to an electrode, though the electrodes employed in practice have their

own more complex geometries. Real electrode processes are frequently
complicated by diffusion with directional components other than normal

to the electrode, i.e., non-linear diffusion, especially near the edges

of the electrode. We can take as examples of complicated diffusion
shielding effects at the DME or the HMDE by the glass tip supporting the
mercury drop [1-3], edge effects at planar electrodes [4-15] and effects
of partially blocked electrodes [16-24]. These effects are strongly
dependent not only on geometries of electrodes but also on the relation

between dimensions of electrodes and the time scale of the experiment.

One of the simplest geometries of electrodes that complicates
diffusion is a planar disk electrode embedded flush in an infinite in- 1
sulating plane. Chronoamperometric curves at this electrode are ex-
pected to have the following behavior as time elapses: at sufficiently
short times they should obey the Cottrell equation (i ~1/vE ), be

gradually influenced by three dimensional diffusion near edges of the

electrode at longer times, and finally approach a steady state current,
as is observed at a spherical electrode [25]. One of the interesting
points of the stationary disk electrode is that the steady state current
can be observed at long times though the electrode is stationary as wel) } ;

1
as planar. Another interesting point is that planar disk electrodes can ! E
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be constructed easily to conform closely to a given model. This is in
contrast to hanging mercury drop electrodes or shielded planar elec-
trodes. The other fascinating point is that for proper dimensions and
times such electrodes make it possible to determine n and D simultaneous-
1y from a single chronoamperogram [9,10,28,29].

Both theoretical and experimental work has been carried out on mass
transport at the stationary disk electrode. Bard [4] concluded from
potentiometric measurements that a planar disk electrode has a transi-
tion time which is similar to that obtained at a spherical electrode
when the time scale is long enough. Lingane [5] gave a quantitative
experimental description of the chronopotentiometric and chronoampero-
metric constants at unshielded planar disk electrodes. Soos and Lingane
[6] derived an analytical expression for diffusion-limited currents at a
planar disk electrode. However, their equation is just the sum of the
Cottrell equation and the expression for the steady state current, so
that it does not describe actual chronoamperometric curves. Flanagan
and Marcoux [7] evaluated departure of chronoamperometric curves from
the Cottrell term by means of digital simulation. Ito et al. [8] in-
troduced an empirical parameter into an expression for the diffusion
current as a result of chronoamperometric experiments at platinum
microelectrodes. Kakihana et al. [9,10] did potentiostatic experiments
at unshielded small disk electrodes in order to obtain more accurate
values of diffusion coefficients of electroactive species. They also
employed digital simulation using a corrected version of the scheme of
Flanagan and Marcoux [7] and compared their simulated values with their

experimental ones. Recently Sarangapani and Delevie [11] challenged

theoretically the problem of ac response at this kind of electrode;
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their expression does not satisfy the boundary condition given. Dayton
et al. [12] measured almost time independent diffusion current at small
sizes of carbon fiber electrodes.

Most recently Oldham has analyzed theoretically the problem of current
1 l distribution for an infinitesimally thick electrode bounded in only one of
31 the remaining four directions [14]. The solution can be applied through
__; appropriate transformation to finite disk electrodes of moderate size. In
f % addition, Heinze has developed a digital simulation model for current at
| a planar disk electrode [15].

Theoretical studies of complicated diffusion have been done on

assumptions that potential theory valid only for the steady state may be

applicable to time dependent systems [17-21], and non-linear parts of
diffusion may be represented as mean concentrations [22-24]. Neither
technique is a direct approach to non-linear diffusion. In the field of g

heat transfer, which is similar to the electrochemical problem from the

phenomenological point of view, a rigorous solution has been given to :
systems with intricate geometrical boundaries [26] by employing the

Wiener-Hopf method [27]. This technique is not only powerful but also

applicable to many electrochemical problems concerning complicated

i scsh e

diffusion with various kinds of geometries of electrodes.

The purpose of this paper is to derive rigorous expressions for E

diffusion-controlled currents at the unshielded planar disk electrode in

quiescent solution.

DERIVATION
Let us consider a simple, reversible electrode reaction, 0 + ne s
R, involving only species soluble in the solution. We assume that

diffusion coefficients of both species have the common value, D, and
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that migration can be neglected. Under these conditions, the expres-
sions for diffusion-controlled currents at the planar disk electrode are

derived for large values of t and for small values of t.

Large Values of t (Descending Series). The diffusion equation

represented in polar coordinates is of the form

aC. aC. oC,
_ 1 3 .2 1 ) ; i =
70 G ()t g e e g} (=00 R (1)

where Cj = C:j (r, 6, t) is the concentration of species j, r is the dis-
tance from the center of the electrode and 6 is the angle which the
radius vector makes with the z-axis as shown in Fig. 1.

The initial conditions are given by
Colrs 8, 0) = €%, Cplr, 8, 0) = 0 (2)

where C0

is the bulk concentration of species 0. Taking into account
that the Nernst equation holds at the electrode, we have the boundary
condition for € = m/2

Colrs /2, t) = tCplr, /2, t) for0<r<a (3)

where ¢ = exp[(nF/RT)(E - Eo)] and a is the radius of the electrode.
Since the sum of the fluxes for the two species at the electrode is

equal to zero, it follows that
aco(r’ n/2, t)/ae + ECR(N n/2, t)/ae =0 for O sr ga (4)

The boundary conditions at the insulating plane are given by

aCJ (r, n/2, t)/36 =0 for r >a (j = 0 or R) (5)

If /v (C0 -0 4 CR) is replaced by v and the Laplace transforma-
tion is carried out with respect to t, eqns. (1), (2), (3) and (5) are

reduced to

(rzs/D +1/8) v = ra (rov/ar)/ar + (1/sing)a(sinedv/230)/3e (6)




0
v(r, n/2) = %— /¥ for 0 <r <a

(7)
ov(r, n/2)/38 =0 for r > a

where v means the Laplace transform of v. If we apply the Kontorovich-

Lebedev transformation [30] given by

oc

o(us6) = Of V(r.G)Ku (r/s/D)(1/r)dr (8)

to eqn. (6), taking into account v ~ 0 (V' r) as r » 0, we have

(12-1/8)¢ + (1/sin8) (3 (sincae/26)/36) = O (9)

Although eqn. (9) holds only for |Re u| < 1/2, analytical continuation

[ 31] makes it valid for any values of u. The solution of eqn. (9) is

¢(u,6) = By Py ,(c0s6) + By Q_y,o(cose)

where P and Q are the first and the second kind Legendre functions [32],
respectively, and B] and 82 are any constants independent of 6. Since
¢ should be continuous at 6 = 0, 82 is found to be zero. Eliminating B]

in terms of the combination of ¢ and 3¢/36 and letting 6 be n/2 yields
P 1/200)0(um/2) + P /5(0)6" (u,m/2) = O (10)

where the prime means the derivative with respect to 6.
By considering eqns. (7) and (8), an alternative expression for

eqn. (10) is written as
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-(CO/s) 6a Ku(r/ s/D) (1// r)dr + me(r,n/Z) Ku(r/'§7U)(1/r)dr
a

L £ 5 (ron/2) K (T /e ()
with |
Ls) = -P__y 0077y 5(0) =

T(1/4 + uw/2)T(1/4 - u/2)/{2T(3/4 + w/2)T(3/4 - u/2)} (12)

Now, a new function ¢ is defined as

o) = T ) TV (em/2) 1, (VD) (e (13)

where £ = (a/2) Vs/0 and IlJ is the modified Bessel function of the
first kind. %(:) is found to be regular in the region Re u > -1/2,
because Iu(z) becomes (z/2)%/T(1+u) [32] as p approaches infinity, and
v~ has the order of /¥ as r approaches zero. On making use of eqn. (A-
2) in Appendix 1, the integral on the right hand side of eqn. (11) can
be expressed in terms of ¢ as

a
SV B U0 e 72 etn) ¢ (72025 o) (14)

L(u) defined by eqn. (12) can be decomposed into the product of two

functions:

L(u) = Ln(u)/LN(u) (15)
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where

Lp(u) = T(1/4 + u/2)/21(3/4 + u/2)
Ly(n) = T(3/4 - w/2)/T(1/4 - u/2)
LP(u) and LN(u) are analytic and non-zero in the regions Re u > -1/2 and

Re p < 1/2, respectively. Substituting eqns. (14) and (15) into egn.
(11) and multiplying both sides by Ly(u)/g"T(-u) yields

VX =+ (1/2) L) elw) (16)

a
V) = (Ly)/2r () (~cYs)K, (r/STDY(1/VF) dr (17)
X(u) = (LN(u)/S“F(-u)) IGV (r,m/2) Ku(r/'§75)(1/r)dr (18)
a

M(u) = Lp(u)T(0)e(-u)/ 26240 (-n) (19)

Since two unknowns, v(r,m/2) and v°(r,n/2) are involved in egn.
(16), explicit solutions cannot be obtained in an ordinary algebraic
manner. However, the Wiener-Hopf technique [27] sometimes enables us to
divide one equation into two independent ones leading to solutions. If
we apply Cauchy's integral theorem [31] to V(u) for -1/2 < Re u < 0 and

take the imaginary part of the path of integration to infinity, we have

V(u) = vplu) + V() (20)
B-*'i"" -1

Vplu) = -(1/2ni) s V(z)(z-u) 'dz
B (21)

B""i“’ -1
V) = Qyani) 1 V(z)(z-p) dz
g7 e

N
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where -1/2 < B < Re u < B” < 0. Inserting the ascending series of Ku

[33] into the integrand of eqn. (17) and integrating term by term re-

sults in

a o
;oK (r/s7D)(1//7)dr = (7 Va/2sinum) zo (1/nt)-
0 n=

{gzn'“/r(n-u+1)(2n-u+1/2) = €MD (] ) (20t 1/2) ) (22)

which is convergent for |Re u| < 1/2. On extending the range of u to
all the complex values by analytic continuation, substituting egns. (22)
and (17) into eqn. (21) and shifting the path of integration to the
left, simple poles occur at z = -2n -1/2 (n =0, 1, 2, ...) with resi-
dues (-1)n &2"/ {(2n + u +1/2) T(2n + 1/2)}. There are no poles at z =

js (3 = 1,2,...) because of the relation

£ oL (1/n1) {22™/r(neg)(2nei+1/2) -€ 2™ r(n-341)(2n-341/2))
n=0 j=1

=0 (23)
Hence VP becomes

Vp = (" Varzs) 2 (1) £2%/r(2n+1/2) (2n+u41/2) (28)
n=

The function W can be expressed as a sum of wp and NN in a similar
way. If egn. (19) is substituted into eqn. (21) with W and Wp replacing
V and VP’ respectively, and the path of integration is shifted to the
left, simple poles arise from I'(1/4 + z/2) at z = -2n-1/2 (n = 0,1,2,...)

with residues (-1)"/n! and from I'(z) at z = -j (j = 1,2,...) with resi-

dues (-l)j/j!. Consequently

VT ™

alcliba it b

i
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My = - 3 1(m1/2) 42n41/2)e* ™ /antr (2041 /2)1(2n43/2) (2n41,41/2)
n=0

+ .;1r(j/z+1/4) «3)£23/8(5-1)131T(3/2+3/4) () (25)
J=

Although the integral part of eqn. (18) is analytic for all values
of u, X is analytic in the restricted region Re u <1/2, owing to LP(u)/
r(-p).

Combining eqn. (20) and W = Wp + NN with eqn. (16) yields

vN + X =Wy = -Vp +Wp t qu/z = G(u)

where we have represented both sides as G(u). Since the left hand side
and the middie are analytic at least in the regions Re u < 0 and Re u

> -1/2, G(u) is analytic in the strip -1/2 <Re u < 0. However we

can let G be analytic over the entire region of u by analytic continua-
tion. Since ¢ 0(1/1), Lp = o1 /), Vp = 0(1/v) and Wp = 0(1/u) as u
approaches infinity, G becomes zero as u approaches infinity. If
Liouville's theorem [31] is applied to two kinds of features for G, G is

found to be identically zero. Hence
ou) = 2(VP-NP)/LP (26)
Inserting eqns. (24) and (25) into eqn. (26), we can readily express ¢ as

o) = (L) £ o ()" (27)
R

The functions a, are functions of u and can be successively determined

to give




aglu) = 2/(21)

ay(u) = 4/n(2u+1)
ay(1) = -8/3(215) + 8/7°(241) -2/3(141)

a5(u) = 16(1/7% - 2/9)/n(2u41) = 8/3n(u+))

The total current, noting egn. (4), is given by

a
(T/nF)] = -7 ZnD(éfb(r,n/Z)/ae)dr
0

~((27D)/ (1+2)) O? V- (r,1/2) (1//F)dr (28)

It is shown in Appendix 1 that the inverse transform of eqn. (13) is
given by

joo
vi(r,n/2) = (\/5i) S (Q(u)E”/F(u))KU(rJ§7U)du (29)

- joo

If we substitute egn. (29) into eqn. (28), exchange the order of in-
tegration and carry out integration with respect to r, noting egn. (22),

we have
i oo

|
[T77F] = ~(z20/a/mi(14)) £ (@(u)/T(u)sinym)e

joo

oo
L

(l/n!){gzn/r(n-u+1)(2n~u+1/2) -52"+“/T(n+u+1)(2n+u+1/2)}du
n=0 .

Completing the path of integration in the right half plane and using
eqn. (23), simple poles appear at u = 2n+1/2. When the residues are

calculated and eqn. (27) is substituted into the resulting equation, it

follows that

s
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k2l
1 (1" ay_, (2n+1/2)/T(2041/2)

[T7nF] = (a5 %Da/s(14c))
k=0 n=0

where [k/2] means the integer part of k/2. The inverse Laplace trans-
form is given by

I = (anFCODa/(1+2))[1 + 2/m/ 87 +
k

0 o nzo(-l)k*“ M(k#1/2) ap, o (20+1/2)17% V2 1 (2041 /2)]
=(4nFcDa/(142)) [1 + 0.35917 v~ V2 + 0.24648 ~3/2
+0.20648 17272 4.0 (30)

where 1 = 4Dt/a2.

Small Values of t (Asymptotic Expansion). The diffusion equations

in circular cylindrical coordinates are given by
3C3/3t = D {(1/r)a(raC;/ar)/ar + 22C;/32%) (5 = 0 or R)(31)

The initial and boundary conditions are the same as eqns. (2), (3), (4)
and (5) if 6 is altered to z and z is set to be zero. On making a
change of variable, v = vr (C0 - C0 -&CR). and performing Laplace trans-

formation, eqn. (31) becomes
SV/D = (1//F)3(ra(V//F)/ar]/ar + 38v/az2
Applying the Hanckel transformation of order zero [31], given by

U(p,z) = 6m v(r,z) /rp Jo(rp)ar (32)

to the above equation yields

.

PRI

e ot
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d2u/dz? = (p% + s/D)U

where the relation, v = 0(/r) as r = 0, has been used. The solution of
the differential equation is obviously given by A-exp[-J$z-s/D z].

\lhen we eliminate a constant, A, from U(p,0) and dU(p,0)/dz, we have

/b2 +s/D U(p,0) + dU(p,0)/dz

0

If we rewrite this in the integral form with the aid of egn. (32) as

well as the boundary conditions and make use of the following expression

[35]

a

S v Jdylrp)dr = (a/p) J;(ap) (33)
0

then we obtain

-c% Jyap)/sp + / v(r,0) /rp Jolrp)dr
a

a
+MsS vi(r,0) /rp Jo(rp)dr =0 (34)
0

»

where M = M(p) = 1// p© + s/D and v*(r,0) = 3v (r,0)/3z.

We introduce three new functions:

u,p) = (172) 1 Gtr,0) 775 Ho{") (rpasm, (Viap) vaBIEr  (35)

a
U(p) = (1/2) £G0(r,0)/75 H'®) (rp)/H, () (ap)Vap YA (36)
a
a
Ug“(p) = of vo(r,0) /rp Jy(rp)dr (37)

where HO(])’ H](]), Ho(z) and H](z) are Bessel functions of the third

kind (36]. Inserting the asymptotic expansions of Bessel functions of
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the third kind into eqns. (35) and (36) and letting r be r+a leads to
U,(p) ~ * (i/2) 1 ¥(r+a,0) eX'PTar (38)
- 0

for large values of Re p.

It is well known that the concentration profile can be represented
by the profile at a spherical electrode as r becomes large. Thus,
v{(r,0) has the order of r'3/2exp[-J§75 (r-a)] [25]. If we substitute
this into egn. (38), we find U,(p) is analytic in Im p > - Re /§/D
and U_(p) is analytic in Im p < Re V/5/D according to the theory of
Laplace transformation. Expressing eqn. (34) by eqns. (35), (36) and
(37) through use of the relation 2d, = Hv(]) + Hv(z), dividing the
resulting equation by H](‘)(ap) vap e"i/4 (p + iJ§7U)']/2, and rear-

ranging it, we have
UM, + UaM_/H](])(ap) vap+ R+ S =0 (39)
where

L= M) = " (p 4 i vsm)I/2

M. =
M_ = M_(p) = e /4 (p-i s57D)71/2

R = -c0/a/asph, (40)
$=(u - COJE/Zsp)H,(2)(ap)/M+H,(])(ap) (41)

M, and M_ are analytic in the regions Im p > -Re /57D and Im p < Re
/s/D, respectively, and their product equals M.

For applying the Wiener-Hopf technique, R is expressed, according




R o 47, T N 2ot

=15~

to Cauchy's integral theorem [31] as

R=R_+R, (42)
oot B
R, = (1/271) J_, g5 (R(2)/(z-p))dz
o+R
R, = -(1/2ri) f (R(z)/(z-p))dz (43)
~cotR”

where -Re V/s/D < g < Im p< 8 < 0. By closing the path of the integral
in eqn. (43) to the upper half plane and calculating the residue at z =

0, R_ becomes
R = -(c%/as2sp)(s/p)'/?
Hence

R, = R- R_ = (c%ay2sp) ((s/D)V/% - 1/m,3 (44)

S can be separated into two parts,

S=5, 45 (45)
o+ R

s, = (1/2ni) s

L - c%as2sz) (B (az)/m, V) (a2 W, (2) (2-p) 02
-ot+R1

(46)
where S_ corresponds to eqn. (43). Since H](Z)(z)/H](])(z) " -ie'Ziz,
the singular point of the integrand in eqn. (46) is restricted only to
z = -i /5/D coming from M_ in the Tower half plane. The singularities
in the bracket of eqn. (46) are located at z = i vS/D and z = 0, both
of which are pretty far from z = -i /5/D for large values of |s]|.

Therefore it is possible to let z be -i /S/D only in the bracket of

T G i VAT 5. — et




eqn. (46) when the path of integration is shifted to the lower half
plane. Changing the variable z = -i /s/D + iw, carrying out integration

and employing the relation,

-7i

u_(e"'p) = -U,(p) (47)

we have the following leading term: 3
S,AU, (1/57D) - cOvan72is/23e 257055/2 ma3/2(3 575 + p) (a8)
On combining eqn. (39) with egns. (42) and (45),

R, + S, + UM, = -uz m/m U ap)as - - s (49)

R, and S, as well as U,/M, are analytic in the region of Im p > -Re
/s/D, while each term on the right hand side is analytic in Im P < 0

because

gy Viap)vas » (172) ga (1€} (r-alp  =i(raP) F-(r 0)gr |

Since all the terms on the left hand side of eqn. (49) tend to zero as p +

i, it follows, according to Liouville's theorem [31], i
U+(p) = -M+(p) {R+(p) + S+(p)} (50)

Substituting eqns. (44) and (48) into eqn. (50) and letting p be /57D,
we can see that U _(i/5/D) has the order of 1/(sp). Therefore, S, has
the order of (1/s) exp [-/5], which can be negligible for large values
of |s|. Then, eqn. (50) becomes asymptotically

U,(p) ~ (¢Oas2sp) (1-u,(p)(s/D)/%) (51)
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From the combination of eqn. (47) and (51), U_ is given by

u_(p) ~ (COJS/Zsp) Q- M_(P)(S/D)]/4}

'! If U, and U_ are eliminated from eqn. (39) with egns. (40) and (41),

U‘0 takes the form

ug(p) ~ (Carzs)(sm) 4t N iapym_ + 1y (apym,) (52)

The flux for the total current is given, in the Laplace transform,

by

a
(T/nF} =/ 2nrD (afb(r,o)/az)dr
0

a .
= (27D/(1+2)) IO v v (r,0)dr

Substituting the Hanckel transform of U'(p,0), given by

[~}

V‘(F,O) = 6 U’(D,O) JFB Jo(rp)dp

into the above equation, changing the order of integration and integrat-

ing with respect to r by use of eqn. (33), we have

4 [T7nF]} = (2nDa/(1+z)) é (3;(ap)u”(p,0)/vp)dp

f U’(p,0) is equal to U‘o(p) since v°(r,0)= 0 for r > a due to the boundary

condition on the insulated wall.

Hence, replacing U” by Uy (given by eqn. (52)) leads to
[T7mF] ~ (nc®0a2T/(142)s)(s/0)'/3

where
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T- f: iy Diapym, + 1, @ (ap)/m,y (3 (ap)/p)dp (53)

! The integral in egn. (53) is evaluated in Appendix 2 to give

1-2n

T = (s/0)/400+(1/5) T T (2n-3/2)F(n+172)261 72" /1(3/2-n)1(5/2-n)T(20)°)

i n=1

j:l The inverse transform for the total current is

I« (anFcPDas(1+2)) {/F/2/%

+ (J7/2) §] r(2n-3/2)0(n+172)2x™ 1 /0 (n) 1 (2n) 21 (3/2-0) 1 (5/2-n)}
n=

RS

= (anFCODa/(14:))(/F/2% + 174 - 3117210 - 315n:87220 iy (54)

DISCUSSION -

The first term in egn. (30) represents the solution for the steady
state, derived from potential theory [37,38], while the leading term in

egn. (54) corresponds to the well-known Cottrell equation. They express

satisfactorily the two kinds of limiting behaviors of i-t curves which b
are intuitively expected.

The function, f, given by

1 = {anFcOas(142)) (1) A (55)

is calculated numerically from eqns. (30) and (54), and the values are

plotted against 1 in Fig. 2. The curve computed from eqn. (30) meets

the curve evaluated from eqn. (54) in the domain 1.4 < 1 < 3.2. This

fact indicates that eqns. (30) and (54) suffice to describe chronoampero-

metric curves of real systems with good accuracy.
The contribution of the edge effect is revealed in the second and

the subsequent terms of eqn. (54). The ratios of the edge contribution




terms to currents due to the Cottrell term are less than 5%, 10% and 30%

for the values of Dt/a® less than 8 x 10°%, 3.2 x 10”3 and 2.9 x 1072,

respectively. On the other hand, if values of Dt/az are larger than
53, 3.5 and 0.65, the discrepancies from the steady state are within 5%,
10% and 305 of the steady state current, respectively.

Some studies on diffusion-controlled currents at a stationary disk
electrode have been directed toward evaluation of the term succeeding
the Cottrell term. According to Soos and Lingane [6], the current ex-

pression can be expanded in the form
I= naanCOJ D/7t {1 + ayv Dt/a + +o¢} (56)

where the coefficient a, is a constant to be determined. Some values of
a, reported so far are listed in Table 1 together with the value calcu-
lated from eqn. (54). The latter value is very close to the simulated
and experimental values which were obtained in many iterated runs by
Kakihana et al. [9,10] and experimental values by Ito et al. [8].
Dimensionless i-t curves obtained analytically by Soos and Lingane
[6] and computed with digita) simulation by Kakihana et al.[9,10] are
shown in Fig. 2. Since the expression by Soos and Lingane is just the
sum of the Cottrell term and the steady state term, it does not ob-
viously describe the real i-t curve. The simulated curve, C, is over-
lapped on curve A for small values of T while it deviates from curve A
as time elapses. This is a natural result if it is noted that digital

simulation frequently involves errors for a number of iterations of

computation corresponding to long electrolysis time. Most experimental




-20-

chronoamperometric curves have been measured in the range 1 < 0.3 [9],
in which they are in agreement with both simulated and our analytical
curves within 3% error.

The clever analytical solution of Gldham [14] is stated to be
accurate for 7 < 0.16. In fact it overestimates the value of f(t) by

only 0.7% for T = 0.16. The approximation remains reasonably accurate

for larger values of 1. For example, for 1 = 1, where the solution of
Soos and Lingane overestimates f(t) by 24%, the corresponding error in
Oldham's solution is only 2.8%.

Sarangapani and Delevie derived an analytical expression for the ac
response at a finite disk electrode [11]. However, egn. (15) in their
paper does not satisfy the boundary condition at r » «. If we carry out
the integration of their eqn. (19) in a fashion similar to that given in
Appendix 2 and take the frequency to be zero, the result should be
identical with eqn. (30) or (54). However, the two leading terms pro-
vide I~ -2.67 nFc%0a for the steady current and I ~ -nFc%a?/m (171:)']/2
for small values of t as a result of integrating and performing inverse
Laplace transformation of their expression. Neither of these results

are reasonable.
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Table 1. Magnitude of the edge effect given by the coefficient of the

first correction term to the Cottrell equation.
ay, is defined by eqn. (56).

The coefficient,

Authors Values of a Methods References
Lingane 2.12 + 0.1 experimental 5
Soos and 4
Lingane N e 2.257.... analytical 6
Flanagan and 1.92 (published) 7
Marcoux 1.79 (corrected) simulated 9,10
Kakihana et al. 1.74 ~ 2.14 experimental

1.77 ~ 1.98 simulated 9

2.16 + 0.35
Dayton et al. (at carbon paste) experimental :

_ 2

3.21 + 0.27

(at carbon fiber)
I1to, Asak .
a:g Nog: ura 1.77 experimental 8
Heinze 1.80-2.20 simulated 15
This work Y= 1.772... analytical --
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APPENDIX 1

This appendix shows that the inverse form of the transformation de-
fined by eqn. (13) is given by eqn. (29). Let us prove that the right
hand side of eqn. (29) in which ¢ is replaced by eqn. (13), i.e.,

oo
(V/ni) s

-je

a
L £ (V71 (qt)/t)dt K (qr)du = (A-1)
0 ¥ u
is equal to v, where q = vs/D. Substituting the relation [33]
K;(z) = (=/2sinu7) {I_u(z) - Iu(z)} (A-2)

into egn. (A-1) yields
jor

a
J= (1/7i) - S (zuv’/2tsinpm) {I (qt)I_ (qr)-I (qt)I (qr)}-
S 0 M u M M

dtdy (A-3)

If u is replaced by -u in the first term of the bracket and eqn. (A-2)

is employed for I_U(qt) - Ip(qt); eqn. (A-3) becomes

i
J= (I/mi) / wT(w) 1,(ar)du (A-4)
-1® .
where
a
T(u) = fo (v*(r, n/2) Ku(qr)/r)dr (A-5)

Since v~ vanishes for r > a, it is possible to extend the upper limit of
the integral to infinity. Then T becomes the Kontorovich-lLebedev trans-
fcrr: (see Eqn. 8) of v°(r, n/2). Eqn. (A-4) can be separated into the
integrals from -i~ to 0 and from 0 to i~. Changing variables u = ix in

the former integral and u = -ix in the latter gives
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J = (i/n) fo x T(ix) {Iix(qx) - I_ix(qx)}dx

If egn. (A-2) is inserted into the above equation, J is given by

oo

3= (2/7%) S % sinh(me) T(RIKG, (ax)ix

This is the inverse Kontorovich-Lebedev transform [30] for egn. (A-5).

Therefore, J is equal to v(r, 7/2).
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APPENDIX 2

In this appendix, the integral value expressed by egn. (53) is

evaluated. We introduce a function,

A= Of?nﬁ‘)(ap)/N_(p) + 12 (ap)/N, (p)) (9, (2p)/p )

where N, (p) = e™/% (v + i 57D)9, N (p) = e /4 (p-i/570)9 and v is any
real constant. It is evident that A tends to eqn. (53) if v and q
approach 1 and -1/2, respectively. Expressing the Bessel functions of
the third kind in A as a combination of Bessel functions of the first

kind yields [363
A = (1/isinvm) fw {[J_v(ap) - e'vTTi Jv(ap)]/N_(p)
0
-[9_ (ap) - €™ 3 (ap)I/N,(P)} (Jy(ap)/p)dp (A-6)

The integral representation of a product of Bessel functions is given by

[39]

cHiw
3,(2)3(z) = (1/271) 1 A0(=x)T(2xr42)(2/2)2X*V* r(xivn)
C-1x

T(x+v+2 )T(x+2) }dx (A-7)

where -v/2 - 1 < ¢ < 0.

Replacing the products of the Bessel functions in egn. (A-6) by

3 eqn. (A-7) and changing the order of integrals, we obtain

C’+iw . ©
A= -(/2nsinun) 5 ((Fme™ME) £ (02N (p))dp
C*-io 0 B

(e 1) £ PN (B))epd(a/2) P o (A-8)
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where

f] = f](x,v) = r(-x+v) T(2x-v+2)/T(x+1)r(x42)r(x-v+2)
f, = fz(x,v) = P(-x)T(2x~v+2)/T(x-v+1)T(x-v+2)T(x+2)

We have set x to be x-v in the integral representation for J1Jv in which
the integrand is fy Therefore the path of the integral for f2 is
located in the left half plane while that for f] is to the left of x =
1. If we carry out the integration in eqn. (A-8) with respect to p, we

have [40]

fo (pZX'\)/N+(p))dp = ei(x-\)/Z'q/Z"'.l/4)'"1 (S/D)X‘\)/Z’q/2+]/2o

T(2x-v+1)T{-2x+v+q-1)/T(q) (A-9)

Since these integrals are convergent for q > 0 and for 0 <Re x <Re
(a/2), q is temporari]y kept positive until integration is carried out
with respect to x. After that, q will be extended to all real values by
analytic continuation and then be set equal to -1/2.

Substituting eqn. (A-9) into eqn. (A-8) and rearranging it yields

C +joo
A = (2(s/D)"Y%/2mir(q)sinvns
c =i

(a%s/4D)*V/211/2,

T(2x-v+1)T(-2x+v+g-1) " {fysin(-x+v/2+q/2-1/4)n

-f.I sin (-x-v/2+q/2-1/4)7n}dx

When we take the limit as v -~ 1 by use of L'Hospital's theorem, we have

+jco
(F(x)4F (x))x (A-10)

-
Tim A = <(2(s/D)"Y2/24%i1(q)) s
v+1 (S |

St
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Fy(x) = by () (1) {hy(x)+y(1-x)-(n/2)cot (-x+q/2+1/4)n)

Falx) = hy(x)f5(x,1) {hy(x)+p(x)+(n/2)cot(-x+q/2+1/4)n}

hy(x) = (a®s/4D)*T(2x)T(-2x+q)sin(-x+a/2+1/4)x

hy(x) = -(1/2)2n(a%s/4D) - (2x) + vla-2x) - y(2xH1) + y(x+1)

where (x) is the Psi or Digamma function [41]. As described before,

the path of integration in eqn. (A-10) is on the left of ¢~ = 1 for F]

and of ¢ = 0 for F,. Since poles do not arise from r(q-2x) or

v(g-2x) under the conditions of eqn. (A-9), poles resulting from closing

o

the contour to the left half plane are the simple poles at x = 0 coming
from three terms involved in the parenthesis of F2 and double poles at x
=1/2 -n (n = 1,2,3,***) coming from I'(2x)y(2x+1). One should take
notice that there is no pole at x = -n (n = 1,2,3,---).

Each contribution of simple poles at x = 0 can be calculated in the

familiar method to give -(1/2)(5/0)1/4, (s/D)]/4 and (1/2)(5/0)]/4 in

turn, after taking the limit q -~ -1/2. If we let the residue of eqn.
(A-10) at x = 0 be Agy» we obtain

Ag = (s/0)'/%

In order to calculate the residue at x = 1/2-n, which is symbolized by :

A,» we should evaluate 3[{F2(x)+F1(x)}(2x+2n-1)2]/ax at x = 1/2-n. If

the following relations:
v(1/2-n) = y(1/2+n)

and

I [3(b(x) - v(1-x) + ncot(-x+a/241/8)1)/3x] 01 pp > 2 (4= -1/2)




are used for the calculation of the residue, An can readily be obtained
Ry = (1) (s/0)/4(a%5/40)1 /2 r (20-3/2)r (n41/2)%/1(3/2+n)
2
r(5/2-n)r(2n)

The sum of An provides

T=1imA = (s/0)740+(1//) £ (a%5740)1/2" (20-3/2).
vl n=]
Q-+ -1/2

r(n+1/2)2/7(3/2-n)1(5/2-n)T(2n)?}




Beiiov. i il

-28-

FIGURE CAPTIONS

Fig. 1. Spherical and cylindrical coordinates located on the stationary
micro disk electrode. Dashed vector for the cylindrical coor-
dinate; solid vector for the spherical coordinate.

Fig. 2. Dimensionless chronoamperometric curves.

A: calculated from eqn. (54), B: calculated from eqn. (30),

C: computed by means of digital simulation [9,10], D: curve by
Soos and Lingane [6]. The ordinate is the function f(t) given

by eqn. (55).
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